Williams Advanced Engineering presented the world's first sodium-ion powered vehicle

Brand-new vehicle has been developed by British battery start-up firm Faradion in collaboration with Williams Advanced Engineering and Oxford University in order to demonstrate all the advantages and capabilities of sodium-ion batteries.

6/2/15 5:00 am chumakdenis 1

British battery start-up firm Faradion in collaboration with Oxford University and Williams Advanced Engineering presented to the public the world's first sodium-ion powered vehicle - electrically-assisted bicycle as a proof-of-concept to showcase the capabilities of this new type of battery chemistry.

3983.jpg3985.jpg

 

 

 

 

 

 

 

By the way of example, this technology could lead to batteries for domestic energy use with properties comparable to Tesla’s recently-unveiled Powerwall, but at around a third of the cost and with considerable safety advantages over conventional lithium-ion technologies.
Well, that definitely sounds not bad at all, isn't it?

A few words about Faradion’s batteries

Faradion’s batteries are based on sodium-ion chemistry( it has released results showing results from a sodium-nickel-zinc-tin compound with a layered structure).

3984.jpg3986.jpg

 

 

 

 

 

 

 

Sodium and lithium occupy the same group on the Periodic Table - alkaline earth or Group I metals, and therefore have very similar chemistries.

Nevertheless, sodium is many times more abundant on Earth than lithium and mostly because of its presence in seawater. Sodium ion cells are simply cheaper than lithium ion.

"Sodium salts are some 90 per cent cheaper than those of the lighter metal and also more sustainable" -  explained Faradion chief technical officer, Jerry Barker. "This means that the total cost of the battery would be around 30-35 per cent cheaper than a comparable lithium-ion battery" - he mentioned.

Sodium-ion battery advantages

"Among sodium’s advantages over lithium is that it does not form alloys with aluminium" -  Barker said.

"This means that in a sodium-ion cell, the current collectors at both the cathode and anode can be made from aluminium foil. This is significant, because in lihium-ion cells, lithium’s tendency to alloy with aluminium means that the negative electrode current collector has to be made of copper; and it’s this which is responsible for one of the main drawbacks of lithium-ion cells: their poor characteristics if they are discharged completely. When the cell is at zero charge, the copper starts to dissolve, reducing the cell’s performance. Because of this, lithium-ion cells have to be stored and transported at in a 20-40 per cent state of charge, which leads to safety concerns".

3981.png

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The chemical reactions inside batteries generate heat, and as the temperature inside lithium-ion cells climb, they enter a state known as self-heating. The charscteristics vary depending on cell chemistry, but LiCoO2 cells become self-heating at 90°C, and the temperature can climb at a rate of 4000°C per minute, sometimes leading to fire and explosion. LiFePO4 cells (sometimes marketed as ‘safe’ Li-ion cells) become self-heating at 100°C and heat at a rate of up to 150°C per minute. Sodium-ion cells also have this property, but Barker claims that Faradion cells become self-heating at 150°C and heat at a maximum rate of 52°C.

"This indicates that they are much safer than LCO or LFP technologies" -Barker says.

Moreover, they can be transported in a short-circuited state with no energy stored, making them much easier to transport than Li-ion, which are characterised as a hazardous cargo and subject top strict controls by the International Civil Aviation Authority in terms of the size and number of cells that are allowed in consignments. "There are incidents of charged Li-ion batteries producing smoke, extreme heat, catching fire or exploding" - Barker said. "Faradion has patented a method for transporting and storing cells that avoids those risks".

High-tech performance

In terms of performance, Barker said that Faradion’s cells approach those of li-ion technologies. In terms of cathode specific energy Faradion’s cells come in at around 500Whr/kg; lower than LCO but higher than LFP. "We’re still testing our second-generation cells on a discharge-recharge cycle, but we’ve extrapolated to a thousand cycles and that indicates capacity should be at 93 per cent of the original" - Jerry Barker said.

 

"Sodium technology is a direct drop-in replacement for lithium, in terms of usage and manufacturing; the manufacturing process has the same steps for both types of cell and a production line could be changed from one to the other easily. Faradion hopes to license its technology to manufacturers rather than undertake large-scale production itself".

Larger cells

3982.pngAs a proof-of-concept, the cells for the e-bike have been manufactured to be larger than necessary, which helps to avoid unnecessary costs and lengthy manufacturing processes at this early stage. When optimised, the cells will be comparable in size to lithium-ion battery packs already on the market. As such, there is potential to exploit the technology for use in a wide range of electric and hybrid vehicles, as well as energy storage applications.

E-bike battery pack

The e-bike battery pack is made up of four 12-cell modules that were designed and manufactured by Williams Advanced Engineering and controlled by a Williams designed battery management system. Williams is a proven leader in the design and manufacture of battery energy storage technology, having developed batteries for the Formula E electric racing series, Jaguar C-X75 hybrid supercar, and the Kinetic Energy Recovery Systems (KERS) that helped power the company’s Formula One racing cars from 2011-2013. Oxford University’s expertise has been used to maximise battery life and it is expected that as well as comparable performance, sodium-ion cells can offer a comparable lifetime to lithium-ion products.

Paul McNamara, Technical Director of Williams Advanced Engineering, said; “Williams Advanced Engineering has a history of innovation in lithium-ion battery technology for a range of different applications and whilst lithium-ion is still the dominant choice of chemistry, sodium-ion is a fascinating alternative that could have real benefits in terms of cost and availability. We have worked closely with Faradion and Oxford University to explore its potential and today was about showcasing the concept in a real world application for the first time.”

Plans for the future

The company believes its biggest potential market is in static urban energy storage. "You could have individual batteries for homes with photovoltaic panels, or for a street or bocks of flats" - chairman Chris Wright told us.

 "But the potential there is huge. However, recently we’ve had a lot of enquiries from the automotive sector".

The e-bike project has seen Faradion develop its cells, while Williams built the battery and designed the battety management system. Faradion already has an improvements programme in its sights, including reducing the size of the cell pouches from about 20x10cm to 10x5cm, optimising the hard-carbon electrodes for use with sodium.

Well, good luck with that.

We'll be eagerly waiting for more news from British battery start-up firm.

  sodium-ion batteries williams advanced engineering faradion start-up firm faradion sodium-ion powered vehicle jerry barker innovations battery startup battery with high energy and power capacity

You must be logged in to comment!